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Fig. 3. Shear constant C.. versus pressure in 
sodium halides. 

have been taken from Darnell and McCollum 
[1970] and Bassett et al. [1968, 1969]. 

It is clear from Figures 3 and 4 that the low
pressure transitions in the rubidium halides, 
moderate-pressure transitions in the potassium 
halides, and relative stability of the sodium 
halides can be understood by looking at the 
relative pressures at which macroscopic insta
bility occurs. It is also clear, however, that the 
actual phase transition invariably takes place 
at a much lower pressure than t.hat predicted 
by the vanishing of C ... 

To predict the transition pressure more ac
curately without making a more detailed ther-
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Fig. 4. Shear constant C .. versus pressure In 

potassium and rubidium halides. 
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Fig. 5. C";K versus pressure in sodium halides. 

modynamic calculation, one can use an empiri
cal rule that the transition occurs when Cu 

decreases to some critical fraction a, of the bulk 
modulus K. C .. /K is plotted versus pressure for 
the sodium halides in Figure 5 and for the 
potassium and rubidium halides in Figure 6. 
As in Figures 3 and 4, well-established phase 
transitions are indicated by the change from 
a thick to a narrow line. The critical values of 
a = C .. /K at transition are given in Table 6. 
The value of a for NaCI is reasonable and tends 
to confirm my extrapolation of C ... 

It is possible to predict transition pressures 
in the other alkali halides by using Figures 5 
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Fig. 6. C .. /K versus pressure in potassium and 
rubidium halides. 
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TABLE 6. ,,= C44/K at the Phase Transition from 
NaCI to CsCI Structure' for Some Alkali H~lides 

CI Br l 

Rb 0.13 0 .225 0.212 0.193 
i< 0. 195 0.,IB7 0.16 
Na 0. 14 

• . I 
and 6. Figure- 5 suggests that NaBr and NaI 
should never reaGh the critical point Qf insta
bility and should therefore be stable ~o pres
sures greater than PIKo = 1.25 (250.and 190 
kb, ' respectively). If the transition in RbF 
postulated by Darnell and McCollUm, is cor
rect, the fluorides may have relatively low values 
of a. Taking this factor into account, I predict 
a transition in NaF between 300 and 450 kb 
and in KF between 70 and 95 kb, A transition 
must occur in KF before the macrosc(lpic in
stability at 200 kb takes place. 

The predictions of high-pressure shear con
stants and phase transitions that I have made 
in this section are based solely on data .easily 
measured at low pressure:' .They provide esti
mates of the properties of these alkali halides at 
high pressure that should prove useful in the 
design of future high-pressure experiments. 

ApPENDIX 

The procedures for deriving the equations for 
the effective elastic constants from a lattice 
model by the method of long waves [Born, 
1926] is well known. For a diatomic centro
symmetric lattice such as NaCl, the equations 
are quite simple [Blackman, 1958; Anderson 
and Liebermann, 1970]. 

The general expression for lattice energy is 
given in (1) and for the unstrained lattice 
reduces w 

(AI) 

where r' = (2)1/2r and where the summation of 
the electrostatic energy over all lattice points 
has been replaced by the Madelung constant for 
NaCI (A. = 1.74756) and the other summa
tions have been made. The pressure (equation 
2) is obtained by straightforward differentiation 

:c. = ~ L - [Q(l - ~2y2) + px
2
) ; 

1 "[ 2 2 2) t ~ o.4 ~ V £...JQx y + px 

1 "(1 4 ' -' 2 2 2 2 Ki = - £...J aQx + aQx y - lpx h, . V , 

where 

and 

1 a 
p=-r ar 

Q = .! i!.. (.! aq,) 
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~ 
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(A 5) 

(A6) 
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Here x and yare components of r, the inter
ionic distance of the appropriate pair of ions 
in the summation. The summation is then 
broken into three parts corresponding to electro
static, nearest-neighbor, and next-nearest-neigh
bor terms: 

p = pE + pNN + pNNN (A8) 

Q = QE + QNN + QNNN (A9) 
NN = -(I/r2)(r/ p)oo-r/• (AIO) p 

QNN = .! ( + + -; )oo-r/. 
r r p rp (All) 

NNN = - lEo )2 [I2(:~y2 -I2(:~ YJ (AI2) p 

QNNN = lEo )4 [168(:~ y2 -96(:~ YJ (AI3) 

The NN and NNN contributions to the 
elastic constants are determined by , a straight
forward summation according to equations A3-
A5 utilizing information on the crystal struc
ture [e.g., Anderson and Liebermann, 1970; 
Sammis, 1970J and equations All-A14. The 
electrostatic contributions involve lattice sums 
similar to the Madelung constant and were 
taken from Cowly [1962J. The results are 
equations 3-5. 


