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Fig. 3. Shear constant Cu versus pressure in
sodium halides.

have been taken from Darnell and McCollum
[1970] and Bassett et al. [1968, 1969].

It is clear from Figures 3 and 4 that the low-
pressure transitions in the rubidium halides,
moderate-pressure transitions in the potassium
halides, and relative stability of the sodium
halides can be understood by looking at the
relative pressures at which macroscopic insta-
bility occurs. It is also clear, however, that the
actual phase transition invariably takes place
at a much lower pressure than that predicted
by the vanishing of C,,.

To predict the transition pressure more ac-
curately without making a more detailed ther-
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Fig. 4. Shear constant Cu versus pressure in

potassium and rubidium halides.
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Fig. 5. Cu/K versus pressure in sodium halides.

modynamic calculation, one can use an empiri-
cal rule that the transition occurs when C.,
decreases to some critical fraction @ of the bulk
modulus K. C,/K is plotted versus pressure for
the sodium halides in Figure 5 and for the
potassium and rubidium halides in Figure 6.
As in Figures 3 and 4, well-established phase
transitions are indicated by the change from
a thick to a narrow line. The critical values of
a = C,/K at transition are given in Table 6.
The value of & for NaCl is reasonable and tends
to confirm my extrapolation of C..

It is possible to predict transition pressures
in the other alkali halides by using Figures 5
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Evastic PROPERTIES IN ALKALI HALIDES

TABLE 6. o = Cyy/K at the Phase Transition from
NaCl to CsCl Structure for Some Alkali Halides

F Cl Br/ . 1

1

-

> 4

and 6. Figure 5 suggests that NaBr %nd Nal
should never reach the critical point of insta-
bility and should therefore be stable to pres-
sures greater than P/K, = 1.25 (250 and 190
kb, respectively). If the transition in RbF
postulated by Darnell and MecCollum. is cor-
rect, the fluorides may have relatively low values
of a. Taking this factor into account, I predict
a transition in NaF between 300 and 450 kb
and in KF between 70 and 95 kb. A transition
must occur in KF before the macroscopic in-
stability at 200 kb takes place.

The predictions of high-pressure shear con-
stants and phase transitions that I have made
in this section are based solely on data easily
measured at low pressure.” They provide esti-
mates of the properties of these alkali halides at
high pressure that should prove useful in the
design of future high-pressure experiments.

APPENDIX

The procedures for deriving the equations for
the effective elastic constants from a lattice
model by the method of long waves [Born,
1926] is well known. For a diatomic centro-
symmetric lattice such as NaCl, the equations
are quite simple [Blackman, 1958; Anderson
and Liebermann, 1970].

The general expression for lattice energy is
given in (1) and for the unstrained lattice
reduces to

¢ = 2% Ar 4 ghe

ool (7)) - o2)] o

where ©” = (2)"*r and where the summation of
the electrostatic energy over all lattice points
has been replaced by the Madelung constant for
NaCl (4, = 1.74756) and the other summa-
tions have been made. The pressure (equation
2) is obtained by straightforward differentiation

855
og (A1), which yields
P = —(/3Vrdp/ar (A2

where the volume per ion pair V is 2r* for NaCL
’D,he equati/ons for the elastic constants are

=L TwE - D+t @

'

| Ciy = '%—, 2 [@z%y* + pa’] Y

K =5 TG0 + 10 — ) (A9

d

P =i (A6)

Q=11(16_¢)

rdr \r Or

(A7)

Here z and y are components of r, the inter-
ionic distance of the appropriate pair of ions
in the summation. The summation is then
broken into three parts corresponding to electro-
static, nearest-neighbor, and next-nearest-neigh-
bor terms:

p= pE + pNN + pN’NN
Q="+ @™+ @™
™ = —(/)e/ b

(A8)
(49)
(A10)

(A11)

;4
12 6
& %eo;%; [168(%) —96(';"7')] (A13)

The NN and NNN contributions to the
elastic constants are determined by a straight-
forward summation according to equations A3-
A5 utilizing information on the crystal struc-
ture [e.g., Anderson and Liebermann, 1970;
Sammis, 1970] and equations A11-A14. The
electrostatic contributions involve lattice sums
similar to the Madelung constant and were
taken from Cowly [1962]. The results are
equations 3-5.




