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Fig. 3. Shear constant C.. versus pressure in 
sodium halides. 

have been taken from Darnell and McCollum 
[1970] and Bassett et al. [1968, 1969]. 

It is clear from Figures 3 and 4 that the low­
pressure transitions in the rubidium halides, 
moderate-pressure transitions in the potassium 
halides, and relative stability of the sodium 
halides can be understood by looking at the 
relative pressures at which macroscopic insta­
bility occurs. It is also clear, however, that the 
actual phase transition invariably takes place 
at a much lower pressure than t.hat predicted 
by the vanishing of C ... 

To predict the transition pressure more ac­
curately without making a more detailed ther-
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Fig. 4. Shear constant C .. versus pressure In 

potassium and rubidium halides. 
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Fig. 5. C";K versus pressure in sodium halides. 

modynamic calculation, one can use an empiri­
cal rule that the transition occurs when Cu 

decreases to some critical fraction a, of the bulk 
modulus K. C .. /K is plotted versus pressure for 
the sodium halides in Figure 5 and for the 
potassium and rubidium halides in Figure 6. 
As in Figures 3 and 4, well-established phase 
transitions are indicated by the change from 
a thick to a narrow line. The critical values of 
a = C .. /K at transition are given in Table 6. 
The value of a for NaCI is reasonable and tends 
to confirm my extrapolation of C ... 

It is possible to predict transition pressures 
in the other alkali halides by using Figures 5 
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Fig. 6. C .. /K versus pressure in potassium and 
rubidium halides. 
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TABLE 6. ,,= C44/K at the Phase Transition from 
NaCI to CsCI Structure' for Some Alkali H~lides 

CI Br l 

Rb 0.13 0 .225 0.212 0.193 
i< 0. 195 0.,IB7 0.16 
Na 0. 14 

• . I 
and 6. Figure- 5 suggests that NaBr and NaI 
should never reaGh the critical point Qf insta­
bility and should therefore be stable ~o pres­
sures greater than PIKo = 1.25 (250.and 190 
kb, ' respectively). If the transition in RbF 
postulated by Darnell and McCollUm, is cor­
rect, the fluorides may have relatively low values 
of a. Taking this factor into account, I predict 
a transition in NaF between 300 and 450 kb 
and in KF between 70 and 95 kb, A transition 
must occur in KF before the macrosc(lpic in­
stability at 200 kb takes place. 

The predictions of high-pressure shear con­
stants and phase transitions that I have made 
in this section are based solely on data .easily 
measured at low pressure:' .They provide esti­
mates of the properties of these alkali halides at 
high pressure that should prove useful in the 
design of future high-pressure experiments. 

ApPENDIX 

The procedures for deriving the equations for 
the effective elastic constants from a lattice 
model by the method of long waves [Born, 
1926] is well known. For a diatomic centro­
symmetric lattice such as NaCl, the equations 
are quite simple [Blackman, 1958; Anderson 
and Liebermann, 1970]. 

The general expression for lattice energy is 
given in (1) and for the unstrained lattice 
reduces w 

(AI) 

where r' = (2)1/2r and where the summation of 
the electrostatic energy over all lattice points 
has been replaced by the Madelung constant for 
NaCI (A. = 1.74756) and the other summa­
tions have been made. The pressure (equation 
2) is obtained by straightforward differentiation 

:c. = ~ L - [Q(l - ~2y2) + px
2
) ; 

1 "[ 2 2 2) t ~ o.4 ~ V £...JQx y + px 

1 "(1 4 ' -' 2 2 2 2 Ki = - £...J aQx + aQx y - lpx h, . V , 

where 

and 

1 a 
p=-­r ar 

Q = .! i!.. (.! aq,) 
r ar r ar 

(A3) 
~ 

(A4) 

(A 5) 

(A6) 

(A7) 

Here x and yare components of r, the inter­
ionic distance of the appropriate pair of ions 
in the summation. The summation is then 
broken into three parts corresponding to electro­
static, nearest-neighbor, and next-nearest-neigh­
bor terms: 

p = pE + pNN + pNNN (A8) 

Q = QE + QNN + QNNN (A9) 
NN = -(I/r2)(r/ p)oo-r/• (AIO) p 

QNN = .! ( + + -; )oo-r/. 
r r p rp (All) 

NNN = - lEo )2 [I2(:~y2 -I2(:~ YJ (AI2) p 

QNNN = lEo )4 [168(:~ y2 -96(:~ YJ (AI3) 

The NN and NNN contributions to the 
elastic constants are determined by , a straight­
forward summation according to equations A3-
A5 utilizing information on the crystal struc­
ture [e.g., Anderson and Liebermann, 1970; 
Sammis, 1970J and equations All-A14. The 
electrostatic contributions involve lattice sums 
similar to the Madelung constant and were 
taken from Cowly [1962J. The results are 
equations 3-5. 


